Nuprl Lemma : rv-minus_wf

[rv:RealVectorSpace]. ∀[x:Point].  (-x ∈ Point)


Proof




Definitions occuring in Statement :  rv-minus: -x real-vector-space: RealVectorSpace ss-point: Point uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B rv-minus: -x member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  real-vector-space_wf real-vector-space_subtype1 ss-point_wf int-to-real_wf rv-mul_wf
Rules used in proof :  because_Cache isect_memberEquality applyEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis natural_numberEquality minusEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x:Point].    (-x  \mmember{}  Point)



Date html generated: 2016_11_08-AM-09_14_09
Last ObjectModification: 2016_10_31-PM-01_31_26

Theory : inner!product!spaces


Home Index