Nuprl Lemma : rv-minus_wf
∀[rv:RealVectorSpace]. ∀[x:Point].  (-x ∈ Point)
Proof
Definitions occuring in Statement : 
rv-minus: -x
, 
real-vector-space: RealVectorSpace
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
rv-minus: -x
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
real-vector-space_wf, 
real-vector-space_subtype1, 
ss-point_wf, 
int-to-real_wf, 
rv-mul_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
applyEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
natural_numberEquality, 
minusEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x:Point].    (-x  \mmember{}  Point)
Date html generated:
2016_11_08-AM-09_14_09
Last ObjectModification:
2016_10_31-PM-01_31_26
Theory : inner!product!spaces
Home
Index