Nuprl Lemma : rv-perm-id
∀[rv:Top]. (1 ~ <λx.x, λx.x>)
Proof
Definitions occuring in Statement : 
rv-permutation-group: Perm(rv), 
sg-id: 1, 
uall: ∀[x:A]. B[x], 
top: Top, 
lambda: λx.A[x], 
pair: <a, b>, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
btrue: tt, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
top: Top, 
member: t ∈ T, 
all: ∀x:A. B[x], 
mk-s-group: mk-s-group(ss; e; i; o; sep; invsep), 
permutation-s-group: Perm(rv), 
sg-id: 1, 
rv-permutation-group: Perm(rv)
Lemmas referenced : 
top_wf, 
rec_select_update_lemma
Rules used in proof : 
sqequalAxiom, 
isect_memberFormation, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[rv:Top].  (1  \msim{}  <\mlambda{}x.x,  \mlambda{}x.x>)
Date html generated:
2016_11_08-AM-09_20_53
Last ObjectModification:
2016_11_03-AM-11_37_08
Theory : inner!product!spaces
Home
Index