Nuprl Lemma : rv-perm-id

[rv:Top]. (1 ~ <λx.x, λx.x>)


Proof




Definitions occuring in Statement :  rv-permutation-group: Perm(rv) sg-id: 1 uall: [x:A]. B[x] top: Top lambda: λx.A[x] pair: <a, b> sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] btrue: tt bfalse: ff ifthenelse: if then else fi  eq_atom: =a y top: Top member: t ∈ T all: x:A. B[x] mk-s-group: mk-s-group(ss; e; i; o; sep; invsep) permutation-s-group: Perm(rv) sg-id: 1 rv-permutation-group: Perm(rv)
Lemmas referenced :  top_wf rec_select_update_lemma
Rules used in proof :  sqequalAxiom isect_memberFormation hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[rv:Top].  (1  \msim{}  <\mlambda{}x.x,  \mlambda{}x.x>)



Date html generated: 2016_11_08-AM-09_20_53
Last ObjectModification: 2016_11_03-AM-11_37_08

Theory : inner!product!spaces


Home Index