Nuprl Lemma : topeq-equiv
∀X:Space. EquivRel(|X|;a,b.topeq(X;a;b))
Proof
Definitions occuring in Statement : 
topeq: topeq(X;a;b), 
toptype: |X|, 
topspace: Space, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
pi2: snd(t), 
pi1: fst(t), 
all: ∀x:A. B[x], 
topspace: Space, 
toptype: |X|, 
topeq: topeq(X;a;b)
Lemmas referenced : 
equiv_rel_wf
Rules used in proof : 
applyEquality, 
lambdaEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
universeEquality, 
productEquality, 
hypothesis, 
thin, 
productElimination, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}X:Space.  EquivRel(|X|;a,b.topeq(X;a;b))
Date html generated:
2018_07_29-AM-09_47_52
Last ObjectModification:
2018_06_21-AM-10_28_53
Theory : inner!product!spaces
Home
Index