Nuprl Definition : topfun
topfun(X;Y) ==  {f:|X| ⟶ |Y|| ∀a,b:|X|.  (topeq(X;a;b) ⇒ topeq(Y;f a;f b))} 
Definitions occuring in Statement : 
topeq: topeq(X;a;b), 
toptype: |X|, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x]
Definitions occuring in definition : 
apply: f a, 
topeq: topeq(X;a;b), 
implies: P ⇒ Q, 
toptype: |X|, 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
set: {x:A| B[x]} 
FDL editor aliases : 
topfun
Latex:
topfun(X;Y)  ==    \{f:|X|  {}\mrightarrow{}  |Y||  \mforall{}a,b:|X|.    (topeq(X;a;b)  {}\mRightarrow{}  topeq(Y;f  a;f  b))\} 
Date html generated:
2018_07_29-AM-09_48_10
Last ObjectModification:
2018_06_21-AM-10_06_51
Theory : inner!product!spaces
Home
Index