Nuprl Lemma : topspace_wf

Space ∈ 𝕌'


Proof




Definitions occuring in Statement :  topspace: Space member: t ∈ T universe: Type
Definitions unfolded in proof :  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] uall: [x:A]. B[x] prop: member: t ∈ T topspace: Space
Lemmas referenced :  equiv_rel_wf
Rules used in proof :  hypothesis applyEquality lambdaEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut hypothesisEquality cumulativity functionEquality setEquality universeEquality productEquality computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
Space  \mmember{}  \mBbbU{}'



Date html generated: 2018_07_29-AM-09_47_30
Last ObjectModification: 2018_06_21-AM-09_58_36

Theory : inner!product!spaces


Home Index