Nuprl Lemma : path-ss-point
∀[X:Top]
  (Point(Path(X)) ~ {f:{x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}  ⟶ Point(X)| ∀t,t':{x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)} .  (t ≡ t' ⇒ f t ≡ f t\000C')} )
Proof
Definitions occuring in Statement : 
path-ss: Path(X), 
unit-ss: 𝕀, 
ss-eq: x ≡ y, 
ss-point: Point(ss), 
rleq: x ≤ y, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
top: Top, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
ss-point: Point(ss), 
path-ss: Path(X), 
ss-fun: X ⟶ Y, 
ss-function: ss-function(X;Y;f), 
fun-ss: A ⟶ ss, 
set-ss: {x:ss | P[x]}, 
mk-ss: Point=P #=Sep cotrans=C, 
all: ∀x:A. B[x], 
member: t ∈ T, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
unit_ss_point_lemma, 
rec_select_update_lemma, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :memTop, 
isect_memberFormation_alt, 
axiomSqEquality
Latex:
\mforall{}[X:Top]
    (Point(Path(X))  \msim{}  \{f:\{x:\mBbbR{}|  (r0  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r1)\}    {}\mrightarrow{}  Point(X)| 
                                          \mforall{}t,t':\{x:\mBbbR{}|  (r0  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r1)\}  .    (t  \mequiv{}  t'  {}\mRightarrow{}  f  t  \mequiv{}  f  t')\}  )
Date html generated:
2020_05_20-PM-01_20_12
Last ObjectModification:
2020_02_08-AM-11_41_42
Theory : intuitionistic!topology
Home
Index