Nuprl Lemma : l_treeco_wf
∀[L,T:Type].  (l_treeco(L;T) ∈ Type)
Proof
Definitions occuring in Statement : 
l_treeco: l_treeco(L;T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
l_treeco: l_treeco(L;T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
corec_wf, 
ifthenelse_wf, 
eq_atom_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
productEquality, 
atomEquality, 
instantiate, 
hypothesisEquality, 
tokenEquality, 
hypothesis, 
universeEquality, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[L,T:Type].    (l\_treeco(L;T)  \mmember{}  Type)
Date html generated:
2018_05_22-PM-09_38_15
Last ObjectModification:
2015_12_28-PM-06_41_44
Theory : labeled!trees
Home
Index