Nuprl Lemma : free-dma-neg
∀[T,eq,x:Top].  (¬(x) ~ dm-neg(T;eq;x))
Proof
Definitions occuring in Statement : 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
dma-neg: ¬(x), 
dm-neg: ¬(x), 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
dma-neg: ¬(x), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rec_select_update_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[T,eq,x:Top].    (\mneg{}(x)  \msim{}  dm-neg(T;eq;x))
Date html generated:
2016_05_18-AM-11_49_05
Last ObjectModification:
2015_12_28-PM-01_55_00
Theory : lattices
Home
Index