Nuprl Definition : free-1-iso
free-1-iso(s;K) ==  <λx.Σ(p∈x). let k,s = p in k * 1, λk.{<* k 1, s>}, λb.Ax, λa.Ax>
Definitions occuring in Statement : 
one-dim-vs: one-dim-vs(K), 
vs-mul: a * x, 
infix_ap: x f y, 
apply: f a, 
lambda: λx.A[x], 
spread: spread def, 
pair: <a, b>, 
axiom: Ax, 
rng_one: 1, 
rng_times: *, 
rng_zero: 0, 
rng_plus: +r, 
bag-summation: Σ(x∈b). f[x], 
single-bag: {x}
Definitions occuring in definition : 
bag-summation: Σ(x∈b). f[x], 
rng_zero: 0, 
infix_ap: x f y, 
rng_plus: +r, 
spread: spread def, 
vs-mul: a * x, 
one-dim-vs: one-dim-vs(K), 
single-bag: {x}, 
apply: f a, 
rng_times: *, 
rng_one: 1, 
pair: <a, b>, 
lambda: λx.A[x], 
axiom: Ax
FDL editor aliases : 
free-1-iso
Latex:
free-1-iso(s;K)  ==    <\mlambda{}x.\mSigma{}(p\mmember{}x).  let  k,s  =  p  in  k  *  1,  \mlambda{}k.\{<*  k  1,  s>\},  \mlambda{}b.Ax,  \mlambda{}a.Ax>
Date html generated:
2019_10_31-AM-06_30_53
Last ObjectModification:
2019_08_02-PM-04_35_22
Theory : linear!algebra
Home
Index