Nuprl Lemma : neg-bfs_wf

[S:Type]. ∀[K:RngSig]. ∀[fs:basic-formal-sum(K;S)].  (-(fs) ∈ basic-formal-sum(K;S))


Proof




Definitions occuring in Statement :  neg-bfs: -(fs) basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] member: t ∈ T universe: Type rng_sig: RngSig
Definitions unfolded in proof :  subtype_rel: A ⊆B basic-formal-sum: basic-formal-sum(K;S) neg-bfs: -(fs) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf basic-formal-sum_wf bag_wf rng_minus_wf rng_car_wf bag-map_wf
Rules used in proof :  universeEquality because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality applyEquality independent_pairEquality productElimination spreadEquality lambdaEquality cumulativity hypothesis hypothesisEquality productEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[fs:basic-formal-sum(K;S)].    (-(fs)  \mmember{}  basic-formal-sum(K;S))



Date html generated: 2018_05_22-PM-09_47_01
Last ObjectModification: 2018_01_08-AM-11_44_22

Theory : linear!algebra


Home Index