Nuprl Lemma : vs-point_wf
∀[K:RngSig]. ∀[vs:VectorSpace(K)].  (Point(vs) ∈ Type)
Proof
Definitions occuring in Statement : 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
infix_ap: x f y
, 
guard: {T}
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
subtype_rel: A ⊆r B
, 
record-select: r.x
, 
record+: record+, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
vector-space_wf, 
rng_plus_wf, 
rng_times_wf, 
infix_ap_wf, 
rng_zero_wf, 
rng_one_wf, 
rng_car_wf, 
equal_wf, 
all_wf, 
subtype_rel_self
Rules used in proof : 
isect_memberEquality, 
dependent_functionElimination, 
axiomEquality, 
rename, 
setElimination, 
hypothesisEquality, 
functionExtensionality, 
lambdaEquality, 
productEquality, 
because_Cache, 
functionEquality, 
setEquality, 
equalitySymmetry, 
equalityTransitivity, 
universeEquality, 
isectElimination, 
extract_by_obid, 
instantiate, 
tokenEquality, 
applyEquality, 
hypothesis, 
thin, 
dependentIntersectionEqElimination, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].    (Point(vs)  \mmember{}  Type)
Date html generated:
2018_05_22-PM-09_40_13
Last ObjectModification:
2018_01_09-AM-10_14_58
Theory : linear!algebra
Home
Index