Nuprl Lemma : discrete-presheaf-term_wf
∀[C:SmallCategory]. ∀[T:Type]. ∀[t:T]. ∀[X:ps_context{j:l}(C)].  (discr(t) ∈ {X ⊢ _:discr(T)})
Proof
Definitions occuring in Statement : 
discrete-presheaf-term: discr(t), 
discrete-presheaf-type: discr(T), 
presheaf-term: {X ⊢ _:A}, 
ps_context: __⊢, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
discrete-presheaf-term: discr(t), 
discrete-presheaf-type: discr(T), 
presheaf-term: {X ⊢ _:A}, 
presheaf-type-at: A(a), 
pi1: fst(t), 
presheaf-type-ap-morph: (u a f), 
pi2: snd(t), 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B
Lemmas referenced : 
I_set_wf, 
cat-ob_wf, 
cat-arrow_wf, 
psc-restriction_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
istype-universe, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
sqequalRule, 
lambdaEquality_alt, 
hypothesisEquality, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaFormation_alt, 
applyEquality, 
inhabitedIsType, 
functionIsType, 
because_Cache, 
equalityIstype, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[T:Type].  \mforall{}[t:T].  \mforall{}[X:ps\_context\{j:l\}(C)].    (discr(t)  \mmember{}  \{X  \mvdash{}  \_:discr(T)\})
Date html generated:
2020_05_20-PM-01_34_11
Last ObjectModification:
2020_04_02-PM-06_33_06
Theory : presheaf!models!of!type!theory
Home
Index