Nuprl Lemma : presheaf-sigma-p-p
∀C:SmallCategory. ∀X:ps_context{j:l}(C). ∀T,A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀E:{X.T ⊢ _}.
  (((Σ A B)p)p = Σ ((A)p)p (B)(p o p o p;q) ∈ {X.T.E ⊢ _})
Proof
Definitions occuring in Statement : 
presheaf-sigma: Σ A B, 
pscm-adjoin: (s;u), 
psc-snd: q, 
psc-fst: p, 
psc-adjoin: X.A, 
pscm-ap-type: (AF)s, 
presheaf-type: {X ⊢ _}, 
pscm-comp: G o F, 
ps_context: __⊢, 
all: ∀x:A. B[x], 
equal: s = t ∈ T, 
small-category: SmallCategory
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
presheaf-type: {X ⊢ _}, 
psc-snd: q, 
psc-fst: p, 
pscm-comp: G o F, 
pscm-ap-type: (AF)s, 
pscm-adjoin: (s;u), 
presheaf-sigma: Σ A B, 
compose: f o g, 
pscm-ap: (s)x, 
psc-adjoin-set: (v;u)
Lemmas referenced : 
pscm-presheaf-sigma, 
ps_context_cumulativity2, 
psc-adjoin_wf, 
presheaf-type-cumulativity2, 
pscm-comp_wf, 
psc-fst_wf, 
presheaf_type_at_pair_lemma, 
presheaf_type_ap_morph_pair_lemma, 
presheaf-type_wf, 
small-category-cumulativity-2, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
because_Cache, 
hypothesis, 
sqequalRule, 
setElimination, 
rename, 
productElimination, 
Error :memTop, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}C:SmallCategory.  \mforall{}X:ps\_context\{j:l\}(C).  \mforall{}T,A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}E:\{X.T  \mvdash{}  \_\}.
    (((\mSigma{}  A  B)p)p  =  \mSigma{}  ((A)p)p  (B)(p  o  p  o  p;q))
Date html generated:
2020_05_20-PM-01_31_34
Last ObjectModification:
2020_04_02-PM-05_49_42
Theory : presheaf!models!of!type!theory
Home
Index