Nuprl Lemma : pscm-ap-type-fst-adjoin
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[B:{X ⊢ _}]. ∀[s,u:Top].  (((B)p)(s;u) ~ (B)s)
Proof
Definitions occuring in Statement : 
pscm-adjoin: (s;u), 
psc-fst: p, 
pscm-ap-type: (AF)s, 
presheaf-type: {X ⊢ _}, 
ps_context: __⊢, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
presheaf-type: {X ⊢ _}, 
pscm-ap-type: (AF)s, 
psc-fst: p, 
pscm-adjoin: (s;u), 
pscm-ap: (s)x, 
pi1: fst(t), 
subtype_rel: A ⊆r B
Lemmas referenced : 
istype-top, 
presheaf-type_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
productElimination, 
sqequalRule, 
axiomSqEquality, 
hypothesis, 
because_Cache, 
extract_by_obid, 
universeIsType, 
isectElimination, 
hypothesisEquality, 
instantiate, 
applyEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[B:\{X  \mvdash{}  \_\}].  \mforall{}[s,u:Top].    (((B)p)(s;u)  \msim{}  (B)s)
Date html generated:
2020_05_20-PM-01_28_19
Last ObjectModification:
2020_04_02-PM-01_56_06
Theory : presheaf!models!of!type!theory
Home
Index