Nuprl Lemma : sets-ob
∀[C:SmallCategory]. ∀[X:Top].  (cat-ob(sets(C; X)) ~ I:cat-ob(C) × X(I))
Proof
Definitions occuring in Statement : 
sets: sets(C; X)
, 
I_set: A(I)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
product: x:A × B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
small-category: SmallCategory
, 
spreadn: spread4, 
I_set: A(I)
, 
sets: sets(C; X)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
presheaf-elements: el(P)
, 
mk-cat: mk-cat, 
and: P ∧ Q
Lemmas referenced : 
cat_ob_pair_lemma, 
cat_ob_op_lemma, 
top_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
sqequalAxiom, 
isectElimination, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:Top].    (cat-ob(sets(C;  X))  \msim{}  I:cat-ob(C)  \mtimes{}  X(I))
Date html generated:
2018_05_22-PM-09_59_09
Last ObjectModification:
2018_05_20-PM-09_41_59
Theory : presheaf!models!of!type!theory
Home
Index