Nuprl Definition : adjacent-cubes

adjacent-cubes(k;c1;c2) ==
  ∃i:ℕk
   ((∀j:ℕk. ((¬(j i ∈ ℤ))  (((c1- j) (c2- j)) ∧ ((c1+ j) (c2+ j)))))
   ∧ (((c1- i) (c2+ i)) ∨ ((c2- i) (c1+ i))))



Definitions occuring in Statement :  cube-lower: c- cube-upper: c+ req: y int_seg: {i..j-} all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q apply: a natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  exists: x:A. B[x] all: x:A. B[x] int_seg: {i..j-} natural_number: $n implies:  Q not: ¬A equal: t ∈ T int: and: P ∧ Q or: P ∨ Q req: y cube-lower: c- apply: a cube-upper: c+
FDL editor aliases :  adjacent-cubes

Latex:
adjacent-cubes(k;c1;c2)  ==
    \mexists{}i:\mBbbN{}k
      ((\mforall{}j:\mBbbN{}k.  ((\mneg{}(j  =  i))  {}\mRightarrow{}  (((c1-  j)  =  (c2-  j))  \mwedge{}  ((c1+  j)  =  (c2+  j)))))
      \mwedge{}  (((c1-  i)  =  (c2+  i))  \mvee{}  ((c2-  i)  =  (c1+  i))))



Date html generated: 2019_10_30-AM-11_31_32
Last ObjectModification: 2019_09_27-PM-01_34_09

Theory : real!vectors


Home Index