Nuprl Definition : VesleyAxiom

VesleyAxiom ==
  ∀P:ℝ ⟶ ℙ
    (dense-in-interval((-∞, ∞);λx.(¬(P x)))
     (∀x:ℝ. ∀y:{y:ℝy} .  ((P y)  (P x)))
     (∀Q:{x:ℝ| ¬(P x)}  ⟶ 𝔹. ∃Q':ℝ ⟶ 𝔹. ∀x:{x:ℝ| ¬(P x)} Q' x))



Definitions occuring in Statement :  dense-in-interval: dense-in-interval(I;X) riiint: (-∞, ∞) req: y real: bool: 𝔹 prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  apply: a bool: 𝔹 equal: t ∈ T not: ¬A real: set: {x:A| B[x]}  all: x:A. B[x] function: x:A ⟶ B[x] exists: x:A. B[x] implies:  Q req: y lambda: λx.A[x] riiint: (-∞, ∞) dense-in-interval: dense-in-interval(I;X) prop:
FDL editor aliases :  VesleyAxiom

Latex:
VesleyAxiom  ==
    \mforall{}P:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}
        (dense-in-interval((-\minfty{},  \minfty{});\mlambda{}x.(\mneg{}(P  x)))
        {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  x  =  y\}  .    ((P  y)  {}\mRightarrow{}  (P  x)))
        {}\mRightarrow{}  (\mforall{}Q:\{x:\mBbbR{}|  \mneg{}(P  x)\}    {}\mrightarrow{}  \mBbbB{}.  \mexists{}Q':\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}x:\{x:\mBbbR{}|  \mneg{}(P  x)\}  .  Q'  x  =  Q  x))



Date html generated: 2017_10_03-AM-10_15_01
Last ObjectModification: 2017_09_13-PM-03_54_27

Theory : reals


Home Index