Nuprl Definition : VesleySchema2

VesleySchema2 ==
  ∀P:(ℕ+ ⟶ ℤ) ⟶ ℙ
    ((∀f:ℕ+ ⟶ ℤ. ∀k:ℕ+.  ∃g:{x:ℕ+ ⟶ ℤ| ¬(P x)} (g regularize(1;f) ∈ (ℕ+k ⟶ ℤ)))
     (∀Q:{x:ℕ+ ⟶ ℤ| ¬(P x)}  ⟶ 𝔹. ∃Q':(ℕ+ ⟶ ℤ) ⟶ 𝔹. ∀x:{x:ℕ+ ⟶ ℤ| ¬(P x)} Q' x))



Definitions occuring in Statement :  regularize: regularize(k;f) int_seg: {i..j-} nat_plus: + bool: 𝔹 prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  apply: a bool: 𝔹 equal: t ∈ T not: ¬A int: nat_plus: + function: x:A ⟶ B[x] set: {x:A| B[x]}  all: x:A. B[x] exists: x:A. B[x] natural_number: $n regularize: regularize(k;f) int_seg: {i..j-} implies:  Q prop:
FDL editor aliases :  VesleySchema2

Latex:
VesleySchema2  ==
    \mforall{}P:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbP{}
        ((\mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}k:\mBbbN{}\msupplus{}.    \mexists{}g:\{x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  \mneg{}(P  x)\}  .  (g  =  regularize(1;f)))
        {}\mRightarrow{}  (\mforall{}Q:\{x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  \mneg{}(P  x)\}    {}\mrightarrow{}  \mBbbB{}.  \mexists{}Q':(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}.  \mforall{}x:\{x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  \mneg{}(P  x)\}  .  Q'  x  =  Q  x))



Date html generated: 2017_10_03-AM-10_14_31
Last ObjectModification: 2017_09_19-PM-03_51_16

Theory : reals


Home Index