Nuprl Definition : bdd-diff
bdd-diff(f;g) == ∃B:ℕ. ∀n:ℕ+. (|(f n) - g n| ≤ B)
Definitions occuring in Statement :
absval: |i|
,
nat_plus: ℕ+
,
nat: ℕ
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
apply: f a
,
subtract: n - m
Definitions occuring in definition :
exists: ∃x:A. B[x]
,
nat: ℕ
,
all: ∀x:A. B[x]
,
nat_plus: ℕ+
,
le: A ≤ B
,
absval: |i|
,
subtract: n - m
,
apply: f a
FDL editor aliases :
bdd-diff
Latex:
bdd-diff(f;g) == \mexists{}B:\mBbbN{}. \mforall{}n:\mBbbN{}\msupplus{}. (|(f n) - g n| \mleq{} B)
Date html generated:
2016_05_18-AM-06_46_17
Last ObjectModification:
2015_09_23-AM-09_00_35
Theory : reals
Home
Index