Nuprl Lemma : bounded-above_wf

[A:Set(ℝ)]. (bounded-above(A) ∈ ℙ)


Proof




Definitions occuring in Statement :  bounded-above: bounded-above(A) rset: Set(ℝ) uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  bounded-above: bounded-above(A) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf real_wf upper-bound_wf rset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A:Set(\mBbbR{})].  (bounded-above(A)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_09_45
Last ObjectModification: 2015_12_28-AM-01_16_08

Theory : reals


Home Index