Nuprl Lemma : bounded-below_wf

[A:Set(ℝ)]. (bounded-below(A) ∈ ℙ)


Proof




Definitions occuring in Statement :  bounded-below: bounded-below(A) rset: Set(ℝ) uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] bounded-below: bounded-below(A)
Lemmas referenced :  rset_wf lower-bound_wf real_wf exists_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality hypothesisEquality lambdaEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[A:Set(\mBbbR{})].  (bounded-below(A)  \mmember{}  \mBbbP{})



Date html generated: 2016_11_08-AM-09_06_47
Last ObjectModification: 2016_11_07-PM-02_21_51

Theory : reals


Home Index