Nuprl Lemma : bounded-below_wf
∀[A:Set(ℝ)]. (bounded-below(A) ∈ ℙ)
Proof
Definitions occuring in Statement : 
bounded-below: bounded-below(A)
, 
rset: Set(ℝ)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
bounded-below: bounded-below(A)
Lemmas referenced : 
rset_wf, 
lower-bound_wf, 
real_wf, 
exists_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[A:Set(\mBbbR{})].  (bounded-below(A)  \mmember{}  \mBbbP{})
Date html generated:
2016_11_08-AM-09_06_47
Last ObjectModification:
2016_11_07-PM-02_21_51
Theory : reals
Home
Index