Nuprl Lemma : closed-rational-interval_wf

[a:ℤ]. ∀[b:ℤ-o]. ∀[c:ℤ]. ∀[d:ℤ-o].  (closed-rational-interval(a;b;c;d) ∈ Interval)


Proof




Definitions occuring in Statement :  closed-rational-interval: closed-rational-interval(a;b;c;d) interval: Interval int_nzero: -o uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T closed-rational-interval: closed-rational-interval(a;b;c;d)
Lemmas referenced :  rccint_wf rat-to-real_wf int_nzero_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[c:\mBbbZ{}].  \mforall{}[d:\mBbbZ{}\msupminus{}\msupzero{}].    (closed-rational-interval(a;b;c;d)  \mmember{}  Interval)



Date html generated: 2019_10_29-AM-10_46_00
Last ObjectModification: 2019_10_16-AM-09_12_08

Theory : reals


Home Index