Nuprl Lemma : converges-iff-cauchy-ext
∀x:ℕ ⟶ ℝ. (x[n]↓ as n→∞ ⇐⇒ cauchy(n.x[n]))
Proof
Definitions occuring in Statement : 
cauchy: cauchy(n.x[n]), 
converges: x[n]↓ as n→∞, 
real: ℝ, 
nat: ℕ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T, 
so_apply: x[s], 
accelerate: accelerate(k;f), 
converges-iff-cauchy
Lemmas referenced : 
converges-iff-cauchy
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
callbyvalueReduce, 
sqleReflexivity
Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (x[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  \mLeftarrow{}{}\mRightarrow{}  cauchy(n.x[n]))
Date html generated:
2019_10_29-AM-10_10_10
Last ObjectModification:
2019_04_01-PM-10_59_39
Theory : reals
Home
Index