Nuprl Lemma : converges_wf

[x:ℕ ⟶ ℝ]. (x[n]↓ as n→∞ ∈ ℙ)


Proof




Definitions occuring in Statement :  converges: x[n]↓ as n→∞ real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  converges: x[n]↓ as n→∞ uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf real_wf converges-to_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (x[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_36_00
Last ObjectModification: 2015_12_28-AM-00_56_55

Theory : reals


Home Index