Nuprl Definition : convex-on

convex-on(I;x.f[x]) ==
  ∀x,y,t:ℝ.  ((x ∈ I)  (y ∈ I)  (t ∈ [r0, r1])  (f[(t x) ((r1 t) y)] ≤ ((t f[x]) ((r1 t) f[y]))))



Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I rleq: x ≤ y rsub: y rmul: b radd: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions occuring in definition :  all: x:A. B[x] real: implies:  Q i-member: r ∈ I rccint: [l, u] rleq: x ≤ y radd: b rmul: b rsub: y int-to-real: r(n) natural_number: $n
FDL editor aliases :  convex-on

Latex:
convex-on(I;x.f[x])  ==
    \mforall{}x,y,t:\mBbbR{}.
        ((x  \mmember{}  I)
        {}\mRightarrow{}  (y  \mmember{}  I)
        {}\mRightarrow{}  (t  \mmember{}  [r0,  r1])
        {}\mRightarrow{}  (f[(t  *  x)  +  ((r1  -  t)  *  y)]  \mleq{}  ((t  *  f[x])  +  ((r1  -  t)  *  f[y]))))



Date html generated: 2018_05_22-PM-02_19_01
Last ObjectModification: 2017_10_20-PM-01_13_35

Theory : reals


Home Index