Nuprl Lemma : i-approx-approx
∀I:Interval. ∀n,m:Top.  (i-approx(i-approx(I;n);m) ~ i-approx(I;n))
Proof
Definitions occuring in Statement : 
i-approx: i-approx(I;n)
, 
interval: Interval
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
interval: Interval
, 
i-approx: i-approx(I;n)
, 
rccint: [l, u]
, 
member: t ∈ T
Lemmas referenced : 
top_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
cut, 
lemma_by_obid, 
hypothesis, 
because_Cache
Latex:
\mforall{}I:Interval.  \mforall{}n,m:Top.    (i-approx(i-approx(I;n);m)  \msim{}  i-approx(I;n))
Date html generated:
2016_05_18-AM-08_46_30
Last ObjectModification:
2015_12_27-PM-11_47_25
Theory : reals
Home
Index