Nuprl Lemma : i-nonvoid_wf

[I:Interval]. (i-nonvoid(I) ∈ ℙ)


Proof




Definitions occuring in Statement :  i-nonvoid: i-nonvoid(I) interval: Interval uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  i-nonvoid: i-nonvoid(I) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf real_wf i-member_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:Interval].  (i-nonvoid(I)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_45_10
Last ObjectModification: 2015_12_27-PM-11_48_40

Theory : reals


Home Index