Nuprl Lemma : implies-approx-compact

I:Interval. ∀n:ℕ+.  ((∃r:ℝ(r ∈ i-approx(I;n)))  icompact(i-approx(I;n)))


Proof




Definitions occuring in Statement :  icompact: icompact(I) i-approx: i-approx(I;n) i-member: r ∈ I interval: Interval real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop:

Latex:
\mforall{}I:Interval.  \mforall{}n:\mBbbN{}\msupplus{}.    ((\mexists{}r:\mBbbR{}.  (r  \mmember{}  i-approx(I;n)))  {}\mRightarrow{}  icompact(i-approx(I;n)))



Date html generated: 2020_05_20-AM-11_33_15
Last ObjectModification: 2019_12_13-AM-11_25_15

Theory : reals


Home Index