Nuprl Lemma : interval-vec_wf

[I:Interval]. ∀[n:ℕ].  (I^n ∈ Type)


Proof




Definitions occuring in Statement :  interval-vec: I^n interval: Interval nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  prop: all: x:A. B[x] so_apply: x[s] real-vec: ^n so_lambda: λ2x.t[x] nat: interval-vec: I^n member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  interval_wf nat_wf i-member_wf int_seg_wf all_wf real-vec_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache applyEquality lambdaEquality rename setElimination natural_numberEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid setEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:Interval].  \mforall{}[n:\mBbbN{}].    (I\^{}n  \mmember{}  Type)



Date html generated: 2018_07_29-AM-09_44_48
Last ObjectModification: 2018_07_02-AM-11_13_44

Theory : reals


Home Index