Nuprl Lemma : interval-vec_wf
∀[I:Interval]. ∀[n:ℕ].  (I^n ∈ Type)
Proof
Definitions occuring in Statement : 
interval-vec: I^n
, 
interval: Interval
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
real-vec: ℝ^n
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
interval-vec: I^n
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
interval_wf, 
nat_wf, 
i-member_wf, 
int_seg_wf, 
all_wf, 
real-vec_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
rename, 
setElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
setEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I:Interval].  \mforall{}[n:\mBbbN{}].    (I\^{}n  \mmember{}  Type)
Date html generated:
2018_07_29-AM-09_44_48
Last ObjectModification:
2018_07_02-AM-11_13_44
Theory : reals
Home
Index