Nuprl Lemma : iproper-roiint

x:ℝiproper((x, ∞))


Proof




Definitions occuring in Statement :  roiint: (l, ∞) iproper: iproper(I) real: all: x:A. B[x]
Definitions unfolded in proof :  iproper: iproper(I) i-finite: i-finite(I) roiint: (l, ∞) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff all: x:A. B[x] implies:  Q and: P ∧ Q false: False member: t ∈ T prop:
Lemmas referenced :  true_wf false_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation sqequalHypSubstitution productElimination thin voidElimination productEquality cut introduction extract_by_obid hypothesis

Latex:
\mforall{}x:\mBbbR{}.  iproper((x,  \minfty{}))



Date html generated: 2016_10_26-AM-09_29_14
Last ObjectModification: 2016_08_27-AM-10_19_20

Theory : reals


Home Index