Nuprl Definition : locally-non-constant-rational

locally-non-constant-rational(f;a;b;c) ==
  ∀u,v:ℝ.  ((a ≤ u)  (u < v)  (v ≤ b)  (∃n:ℕ+. ∃z:ℤ((u ≤ (r(z))/n) ∧ ((r(z))/n ≤ v) ∧ f((r(z))/n) ≠ c)))



Definitions occuring in Statement :  r-ap: f(x) rneq: x ≠ y rleq: x ≤ y rless: x < y int-rdiv: (a)/k1 int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q int:
Definitions occuring in definition :  all: x:A. B[x] real: rless: x < y implies:  Q nat_plus: + exists: x:A. B[x] int: and: P ∧ Q rleq: x ≤ y rneq: x ≠ y r-ap: f(x) int-rdiv: (a)/k1 int-to-real: r(n)
FDL editor aliases :  locally-non-constant-rational

Latex:
locally-non-constant-rational(f;a;b;c)  ==
    \mforall{}u,v:\mBbbR{}.
        ((a  \mleq{}  u)
        {}\mRightarrow{}  (u  <  v)
        {}\mRightarrow{}  (v  \mleq{}  b)
        {}\mRightarrow{}  (\mexists{}n:\mBbbN{}\msupplus{}.  \mexists{}z:\mBbbZ{}.  ((u  \mleq{}  (r(z))/n)  \mwedge{}  ((r(z))/n  \mleq{}  v)  \mwedge{}  f((r(z))/n)  \mneq{}  c)))



Date html generated: 2016_05_18-AM-09_24_14
Last ObjectModification: 2015_09_23-AM-09_11_03

Theory : reals


Home Index