Nuprl Definition : mconverges-to

lim n→∞.x[n] ==  ∀k:ℕ+(∃N:ℕ [(∀n:ℕ((N ≤ n)  (mdist(d;x[n];y) ≤ (r1/r(k)))))])



Definitions occuring in Statement :  mdist: mdist(d;x;y) rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) nat_plus: + nat: le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q natural_number: $n
Definitions occuring in definition :  nat_plus: + sq_exists: x:A [B[x]] all: x:A. B[x] nat: implies:  Q le: A ≤ B rleq: x ≤ y mdist: mdist(d;x;y) rdiv: (x/y) natural_number: $n int-to-real: r(n)
FDL editor aliases :  mconverges-to

Latex:
lim  n\mrightarrow{}\minfty{}.x[n]  =  y  ==    \mforall{}k:\mBbbN{}\msupplus{}.  (\mexists{}N:\mBbbN{}  [(\mforall{}n:\mBbbN{}.  ((N  \mleq{}  n)  {}\mRightarrow{}  (mdist(d;x[n];y)  \mleq{}  (r1/r(k)))))])



Date html generated: 2019_10_30-AM-06_37_46
Last ObjectModification: 2019_10_02-AM-10_50_49

Theory : reals


Home Index