Nuprl Lemma : mdist_wf

[X:Type]. ∀[d:metric(X)]. ∀[x,y:X].  (mdist(d;x;y) ∈ ℝ)


Proof




Definitions occuring in Statement :  mdist: mdist(d;x;y) metric: metric(X) real: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mdist: mdist(d;x;y) metric: metric(X)
Lemmas referenced :  metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule applyEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectElimination isectIsTypeImplies universeIsType extract_by_obid instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y:X].    (mdist(d;x;y)  \mmember{}  \mBbbR{})



Date html generated: 2019_10_29-AM-10_57_15
Last ObjectModification: 2019_10_02-AM-09_39_10

Theory : reals


Home Index