Nuprl Definition : member-closure

y ∈ closure(A) ==  ∃x:ℕ ⟶ ℝ(lim n→∞.x[n] y ∧ (∀n:ℕ(A x[n])))



Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y real: nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions occuring in definition :  exists: x:A. B[x] function: x:A ⟶ B[x] real: and: P ∧ Q converges-to: lim n→∞.x[n] y all: x:A. B[x] nat: apply: a so_apply: x[s]
FDL editor aliases :  member-closure member-closure

Latex:
y  \mmember{}  closure(A)  ==    \mexists{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (lim  n\mrightarrow{}\minfty{}.x[n]  =  y  \mwedge{}  (\mforall{}n:\mBbbN{}.  (A  x[n])))



Date html generated: 2016_05_18-AM-08_10_41
Last ObjectModification: 2015_09_23-AM-09_04_29

Theory : reals


Home Index