Nuprl Lemma : member-i-type

[I:Interval]. ∀[r:ℝ]. ∀[p:r ∈ I].  (<i-witness(I;r;p), r> ∈ i-type(I))


Proof




Definitions occuring in Statement :  i-type: i-type(I) i-witness: i-witness(I;r;p) i-member: r ∈ I interval: Interval real: uall: [x:A]. B[x] member: t ∈ T pair: <a, b>
Definitions unfolded in proof :  i-type: i-type(I) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] prop:
Lemmas referenced :  i-witness_wf i-witness-property i-member_wf i-approx_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut dependent_pairEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination because_Cache dependent_set_memberEquality setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[r:\mBbbR{}].  \mforall{}[p:r  \mmember{}  I].    (<i-witness(I;r;p),  r>  \mmember{}  i-type(I))



Date html generated: 2016_05_18-AM-08_49_03
Last ObjectModification: 2015_12_27-PM-11_44_20

Theory : reals


Home Index