Nuprl Lemma : member-i-type
∀[I:Interval]. ∀[r:ℝ]. ∀[p:r ∈ I].  (<i-witness(I;r;p), r> ∈ i-type(I))
Proof
Definitions occuring in Statement : 
i-type: i-type(I)
, 
i-witness: i-witness(I;r;p)
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pair: <a, b>
Definitions unfolded in proof : 
i-type: i-type(I)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
i-witness_wf, 
i-witness-property, 
i-member_wf, 
i-approx_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
dependent_pairEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
dependent_set_memberEquality, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[r:\mBbbR{}].  \mforall{}[p:r  \mmember{}  I].    (<i-witness(I;r;p),  r>  \mmember{}  i-type(I))
Date html generated:
2016_05_18-AM-08_49_03
Last ObjectModification:
2015_12_27-PM-11_44_20
Theory : reals
Home
Index