Nuprl Lemma : member_rcoint_lemma

r,u,l:Top.  (r ∈ [l, u) (l ≤ r) ∧ (r < u))


Proof




Definitions occuring in Statement :  rcoint: [l, u) i-member: r ∈ I rleq: x ≤ y rless: x < y top: Top all: x:A. B[x] and: P ∧ Q sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T rcoint: [l, u) i-member: r ∈ I
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule

Latex:
\mforall{}r,u,l:Top.    (r  \mmember{}  [l,  u)  \msim{}  (l  \mleq{}  r)  \mwedge{}  (r  <  u))



Date html generated: 2016_05_18-AM-08_20_30
Last ObjectModification: 2015_12_27-PM-11_55_35

Theory : reals


Home Index