Nuprl Lemma : meq_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[x,y:X]. (x ≡ y ∈ ℙ)
Proof
Definitions occuring in Statement :
meq: x ≡ y
,
metric: metric(X)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
meq: x ≡ y
,
metric: metric(X)
Lemmas referenced :
req_wf,
int-to-real_wf,
metric_wf,
istype-universe
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
applyEquality,
setElimination,
rename,
hypothesisEquality,
hypothesis,
natural_numberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
inhabitedIsType,
isect_memberEquality_alt,
isectIsTypeImplies,
universeIsType,
instantiate,
universeEquality
Latex:
\mforall{}[X:Type]. \mforall{}[d:metric(X)]. \mforall{}[x,y:X]. (x \mequiv{} y \mmember{} \mBbbP{})
Date html generated:
2019_10_29-AM-10_53_54
Last ObjectModification:
2019_10_02-AM-09_35_29
Theory : reals
Home
Index