Nuprl Lemma : mfun_wf

[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)].  (FUN(X ⟶ Y) ∈ Type)


Proof




Definitions occuring in Statement :  mfun: FUN(X ⟶ Y) metric: metric(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mfun: FUN(X ⟶ Y) prop:
Lemmas referenced :  is-mfun_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality functionEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].    (FUN(X  {}\mrightarrow{}  Y)  \mmember{}  Type)



Date html generated: 2019_10_30-AM-06_20_57
Last ObjectModification: 2019_10_02-AM-09_57_06

Theory : reals


Home Index