Nuprl Lemma : mfun_wf
∀[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)].  (FUN(X ⟶ Y) ∈ Type)
Proof
Definitions occuring in Statement : 
mfun: FUN(X ⟶ Y)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mfun: FUN(X ⟶ Y)
, 
prop: ℙ
Lemmas referenced : 
is-mfun_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
functionEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].    (FUN(X  {}\mrightarrow{}  Y)  \mmember{}  Type)
Date html generated:
2019_10_30-AM-06_20_57
Last ObjectModification:
2019_10_02-AM-09_57_06
Theory : reals
Home
Index