Nuprl Lemma : msfun_wf
∀[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)].  (msfun(X;d;Y;d') ∈ Type)
Proof
Definitions occuring in Statement : 
msfun: msfun(X;d;Y;d')
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
msfun: msfun(X;d;Y;d')
, 
prop: ℙ
Lemmas referenced : 
is-msfun_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
functionEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].    (msfun(X;d;Y;d')  \mmember{}  Type)
Date html generated:
2019_10_30-AM-06_26_29
Last ObjectModification:
2019_10_02-AM-10_01_50
Theory : reals
Home
Index