Nuprl Lemma : msfun_wf

[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)].  (msfun(X;d;Y;d') ∈ Type)


Proof




Definitions occuring in Statement :  msfun: msfun(X;d;Y;d') metric: metric(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T msfun: msfun(X;d;Y;d') prop:
Lemmas referenced :  is-msfun_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality functionEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].    (msfun(X;d;Y;d')  \mmember{}  Type)



Date html generated: 2019_10_30-AM-06_26_29
Last ObjectModification: 2019_10_02-AM-10_01_50

Theory : reals


Home Index