Nuprl Definition : mtb-cantor

When mtb is witness to metric space being totally bounded,
the first component of mtb is function of type ⌜ℕ ⟶ ℕ+.
This gives us "general Cantor space" k:ℕ ⟶ ℕB[k]⋅

mtb-cantor(mtb) ==  k:ℕ ⟶ ℕ(fst(mtb)) k



Definitions occuring in Statement :  int_seg: {i..j-} nat: pi1: fst(t) apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions occuring in definition :  function: x:A ⟶ B[x] nat: int_seg: {i..j-} natural_number: $n apply: a pi1: fst(t)
FDL editor aliases :  mtb-cantor

Latex:
mtb-cantor(mtb)  ==    k:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}(fst(mtb))  k



Date html generated: 2019_10_30-AM-06_55_25
Last ObjectModification: 2019_10_11-PM-00_24_52

Theory : reals


Home Index