Nuprl Lemma : prod-discrete
∀A,B:Type.  (discrete-type(A) 
⇒ discrete-type(B) 
⇒ discrete-type(A × B))
Proof
Definitions occuring in Statement : 
discrete-type: discrete-type(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
product-discrete, 
discrete-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
isectElimination, 
universeEquality
Latex:
\mforall{}A,B:Type.    (discrete-type(A)  {}\mRightarrow{}  discrete-type(B)  {}\mRightarrow{}  discrete-type(A  \mtimes{}  B))
Date html generated:
2018_05_22-PM-02_14_22
Last ObjectModification:
2017_10_29-PM-08_06_01
Theory : reals
Home
Index