Nuprl Lemma : prod-discrete

A,B:Type.  (discrete-type(A)  discrete-type(B)  discrete-type(A × B))


Proof




Definitions occuring in Statement :  discrete-type: discrete-type(T) all: x:A. B[x] implies:  Q product: x:A × B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: uall: [x:A]. B[x]
Lemmas referenced :  product-discrete discrete-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality cumulativity independent_functionElimination hypothesis because_Cache isectElimination universeEquality

Latex:
\mforall{}A,B:Type.    (discrete-type(A)  {}\mRightarrow{}  discrete-type(B)  {}\mRightarrow{}  discrete-type(A  \mtimes{}  B))



Date html generated: 2018_05_22-PM-02_14_22
Last ObjectModification: 2017_10_29-PM-08_06_01

Theory : reals


Home Index