Nuprl Lemma : rabs-approx
∀[x,n:Top]. (|x| n ~ |x n|)
Proof
Definitions occuring in Statement :
rabs: |x|
,
absval: |i|
,
uall: ∀[x:A]. B[x]
,
top: Top
,
apply: f a
,
sqequal: s ~ t
Definitions unfolded in proof :
rabs: |x|
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
sqequalAxiom,
lemma_by_obid,
hypothesis,
sqequalHypSubstitution,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
because_Cache
Latex:
\mforall{}[x,n:Top]. (|x| n \msim{} |x n|)
Date html generated:
2016_05_18-AM-07_00_05
Last ObjectModification:
2015_12_28-AM-00_32_57
Theory : reals
Home
Index