Nuprl Lemma : radd_wf
∀[a,b:ℝ].  (a + b ∈ ℝ)
Proof
Definitions occuring in Statement : 
radd: a + b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
radd: a + b
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
top: Top
Lemmas referenced : 
length_wf, 
regular-int-seq_wf, 
nat_plus_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
nil_wf, 
real_wf, 
cons_wf, 
reg-seq-list-add_wf, 
less_than_wf, 
accelerate_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
hypothesis, 
because_Cache, 
applyEquality, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setEquality, 
functionEquality, 
intEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b:\mBbbR{}].    (a  +  b  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-06_48_39
Last ObjectModification:
2016_01_17-AM-01_45_24
Theory : reals
Home
Index