Nuprl Lemma : radd_wf

[a,b:ℝ].  (a b ∈ ℝ)


Proof




Definitions occuring in Statement :  radd: b real: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T radd: b nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: subtype_rel: A ⊆B all: x:A. B[x] top: Top
Lemmas referenced :  length_wf regular-int-seq_wf nat_plus_wf length_of_nil_lemma length_of_cons_lemma nil_wf real_wf cons_wf reg-seq-list-add_wf less_than_wf accelerate_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality hypothesisEquality baseClosed hypothesis because_Cache applyEquality lambdaEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality setEquality functionEquality intEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b:\mBbbR{}].    (a  +  b  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-06_48_39
Last ObjectModification: 2016_01_17-AM-01_45_24

Theory : reals


Home Index