Nuprl Definition : real-closed-interval-lattice
For real numbers ⌜a ≤ b⌝, the reals in the closed interval ⌜[a, b]⌝
form a distributive lattice with meet ⌜rmin(x;y)⌝ and join ⌜rmax(x;y)⌝.
But they do not form a bounded distributive lattice with 0 = a and 1 = b
because we can't prove that ⌜rmin(a;x)⌝ is the same real as ⌜a⌝.
We can only prove that it is an "equivalent" real using the `req` relation
(that we display ⌜x = y⌝).
Thus the closed interval forms a generalized-bounded-distributive-lattice.⋅
real-closed-interval-lattice(a;b) ==  mk-general-bounded-dist-lattice({r:ℝ| r ∈ [a, b]} λ2x y.rmin(x;y);λ2x y.rmax(x;y)\000C;a;b;λ2x y.x = y)
Definitions occuring in Statement : 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rmin: rmin(x;y)
, 
rmax: rmax(x;y)
, 
req: x = y
, 
real: ℝ
, 
so_lambda: λ2x y.t[x; y]
, 
set: {x:A| B[x]} 
, 
mk-general-bounded-dist-lattice: mk-general-bounded-dist-lattice(T;m;j;z;o;E)
FDL editor aliases : 
real-closed-interval-lattice
Latex:
real-closed-interval-lattice(a;b)  ==
    mk-general-bounded-dist-lattice(\{r:\mBbbR{}|  r  \mmember{}  [a,  b]\}  ;\mlambda{}\msubtwo{}x  y.rmin(x;y);\mlambda{}\msubtwo{}x  y.rmax(x;y);a;b;\mlambda{}\msubtwo{}x  y.x  =  y\000C)
Date html generated:
2020_05_20-AM-11_33_50
Last ObjectModification:
2020_01_16-PM-03_28_18
Theory : reals
Home
Index