Nuprl Definition : real-cont

real-cont(f;a;b) ==  ∀k:ℕ+. ∃d:{d:ℝr0 < d} . ∀x,y:{x:ℝx ∈ [a, b]} .  ((|x y| ≤ d)  (|(f x) y| ≤ (r1/r(k))))



Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a natural_number: $n
Definitions occuring in definition :  int-to-real: r(n) natural_number: $n rdiv: (x/y) apply: a rsub: y rabs: |x| rleq: x ≤ y implies:  Q rccint: [l, u] i-member: r ∈ I real: set: {x:A| B[x]}  all: x:A. B[x] rless: x < y exists: x:A. B[x] nat_plus: +
FDL editor aliases :  real-cont

Latex:
real-cont(f;a;b)  ==
    \mforall{}k:\mBbbN{}\msupplus{}.  \mexists{}d:\{d:\mBbbR{}|  r0  <  d\}  .  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|(f  x)  -  f  y|  \mleq{}  (r1/r(k))))



Date html generated: 2016_07_08-PM-06_03_13
Last ObjectModification: 2016_07_05-PM-02_45_16

Theory : reals


Home Index