Nuprl Lemma : real-disjoint_wf

[A,B:ℝ ⟶ ℙ].  (real-disjoint(x.A[x];y.B[y]) ∈ ℙ)


Proof




Definitions occuring in Statement :  real-disjoint: real-disjoint(x.A[x];y.B[y]) real: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-disjoint: real-disjoint(x.A[x];y.B[y]) so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  all_wf real_wf req_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality functionEquality hypothesisEquality productEquality applyEquality functionExtensionality universeEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry cumulativity isect_memberEquality

Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].    (real-disjoint(x.A[x];y.B[y])  \mmember{}  \mBbbP{})



Date html generated: 2017_10_03-AM-10_00_38
Last ObjectModification: 2017_06_30-AM-10_50_32

Theory : reals


Home Index