Nuprl Lemma : real-disjoint_wf
∀[A,B:ℝ ⟶ ℙ].  (real-disjoint(x.A[x];y.B[y]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
real-disjoint: real-disjoint(x.A[x];y.B[y])
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-disjoint: real-disjoint(x.A[x];y.B[y])
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
all_wf, 
real_wf, 
req_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
functionEquality, 
hypothesisEquality, 
productEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
isect_memberEquality
Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].    (real-disjoint(x.A[x];y.B[y])  \mmember{}  \mBbbP{})
Date html generated:
2017_10_03-AM-10_00_38
Last ObjectModification:
2017_06_30-AM-10_50_32
Theory : reals
Home
Index