Nuprl Lemma : real-fun_wf

[a,b:ℝ]. ∀[f:[a, b] ⟶ℝ].  (real-fun(f;a;b) ∈ ℙ)


Proof




Definitions occuring in Statement :  real-fun: real-fun(f;a;b) rfun: I ⟶ℝ rccint: [l, u] real: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-fun: real-fun(f;a;b) all: x:A. B[x] top: Top prop: and: P ∧ Q implies:  Q rfun: I ⟶ℝ
Lemmas referenced :  member_rccint_lemma istype-void real_wf rleq_wf req_wf rfun_wf rccint_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis functionEquality setEquality productEquality isectElimination hypothesisEquality setElimination rename applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    (real-fun(f;a;b)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-07_14_37
Last ObjectModification: 2019_10_09-PM-03_41_14

Theory : reals


Home Index