Nuprl Definition : real-sfun

real-sfun(f;a;b) ==  ∀x,y:{x:ℝx ∈ [a, b]} .  (f x ≠  x ≠ y)



Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I rneq: x ≠ y real: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a
Definitions occuring in definition :  rneq: x ≠ y apply: a implies:  Q rccint: [l, u] i-member: r ∈ I real: set: {x:A| B[x]}  all: x:A. B[x]
FDL editor aliases :  real-sfun

Latex:
real-sfun(f;a;b)  ==    \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    (f  x  \mneq{}  f  y  {}\mRightarrow{}  x  \mneq{}  y)



Date html generated: 2016_07_08-PM-06_02_50
Last ObjectModification: 2016_07_05-PM-02_48_15

Theory : reals


Home Index