Nuprl Lemma : real-subset-metric_wf

[P:ℝ ⟶ ℙ]. (real-subset-metric() ∈ metric(x:ℝ × P[x]))


Proof




Definitions occuring in Statement :  real-subset-metric: real-subset-metric() metric: metric(X) real: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-subset-metric: real-subset-metric() so_apply: x[s] subtype_rel: A ⊆B prop: top: Top
Lemmas referenced :  induced-rmetric_wf real_wf subtype_rel_self pi1_wf_top istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesis applyEquality hypothesisEquality instantiate universeEquality lambdaEquality_alt productElimination independent_pairEquality isect_memberEquality_alt voidElimination productIsType universeIsType because_Cache axiomEquality equalityTransitivity equalitySymmetry functionIsType

Latex:
\mforall{}[P:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].  (real-subset-metric()  \mmember{}  metric(x:\mBbbR{}  \mtimes{}  P[x]))



Date html generated: 2019_10_29-AM-11_05_33
Last ObjectModification: 2019_10_02-AM-09_47_11

Theory : reals


Home Index