Nuprl Definition : real-vec-be

real-vec-be(n;a;b;c) ==  ∃t:ℝ((t ∈ [r0, r1]) ∧ req-vec(n;b;t*a r1 t*c))



Definitions occuring in Statement :  real-vec-mul: a*X real-vec-add: Y req-vec: req-vec(n;x;y) rccint: [l, u] i-member: r ∈ I rsub: y int-to-real: r(n) real: exists: x:A. B[x] and: P ∧ Q natural_number: $n
Definitions occuring in definition :  natural_number: $n int-to-real: r(n) rsub: y real-vec-mul: a*X real-vec-add: Y req-vec: req-vec(n;x;y) rccint: [l, u] i-member: r ∈ I and: P ∧ Q real: exists: x:A. B[x]
FDL editor aliases :  real-vec-be

Latex:
real-vec-be(n;a;b;c)  ==    \mexists{}t:\mBbbR{}.  ((t  \mmember{}  [r0,  r1])  \mwedge{}  req-vec(n;b;t*a  +  r1  -  t*c))



Date html generated: 2016_10_26-AM-10_20_09
Last ObjectModification: 2016_09_26-PM-00_07_09

Theory : reals


Home Index